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Abstract—In recent years, there has been significant progress
in the development and industrial adoption of static analyzers.
Such analyzers typically provide a large, if not huge, number of
configurable options controlling the precision and performance
of the analysis. A major hurdle in integrating static analyzers
in the software-development life cycle is tuning their options to
custom usage scenarios, such as a particular code base or certain
resource constraints.

In this paper, we propose a technique that automatically tailors
a static analyzer, specifically an abstract interpreter, to the code
under analysis and any given resource constraints. We implement
this technique in a framework called TAILOR, which we use
to perform an extensive evaluation on real-world benchmarks.
Our experiments show that the configurations generated by
TAILOR are vastly better than the default analysis options, vary
significantly depending on the code under analysis, and most
remain tailored to several subsequent code versions.

I. INTRODUCTION

Static analysis inspects code, without running it, in order

to prove properties or detect bugs. Typically, static analysis

approximates the behavior of the code, for instance, because

checking the correctness of most properties is undecidable.

Performance is another important reason for this approxima-

tion. In general, the closer the approximation is to the actual

behavior of the code, the less efficient and the more precise

the analysis is, that is, the fewer false positives it reports. For

less tight approximations, the analysis often becomes more

efficient but less precise.

Recent years have seen tremendous progress in both the

development and industrial adoption of static analyzers. No-

table successes include Facebook’s Infer [1], [2] and AbsInt’s

Astrée [3]. Many popular analyzers, such as these, are based

on abstract interpretation [4], a technique that abstracts the

concrete program semantics and reasons about its abstraction.

In particular, program states are abstracted as elements of

abstract domains. Most abstract interpreters offer a wide range

of abstract domains that impact the precision and performance

of the analysis. For instance, the Intervals domain [5] is

typically faster but less precise than Polyhedra [6], which

captures linear inequalities among any number of variables.

In addition to the domains, abstract interpreters usually

provide a large number of other options, for instance, whether

backward analysis should be enabled or how quickly a fixpoint

should be reached. In fact, the sheer number of option combi-

nations (over 6M in our experiments) is bound to overwhelm

users, especially non-expert ones. To make matters worse, the

best option combinations may vary significantly depending on

the code under analysis and the resources, such as time or

memory, that users are willing to spend.

In light of this, we suspect that most users resort to using the

default options that the analysis designer pre-selected for them.

However, these options are definitely not suitable for all code.

Moreover, they do not adjust to different stages of software

development, e.g., running the analysis in the editor should be

much faster than running it in a continuous integration (CI)

pipeline, which in turn should be much faster than running

it prior to a major release. The alternative of enabling the

(in theory) most precise analysis can be even worse, since in

practice it often runs out of time or memory as we show in our

experiments. As a result, the widespread adoption of abstract

interpreters is severely hindered, which is unfortunate since

they constitute an important class of practical static analyzers.

Our approach. To address this issue, we present the first

technique that automatically tailors a generic abstract inter-

preter to a custom usage scenario. With the term custom usage

scenario, we refer to a particular piece of code and specific

resource constraints. The key idea behind our technique is to

phrase the problem of customizing the abstract-interpretation

configuration to a given usage scenario as an optimization

problem. Specifically, different configurations are compared

using a cost function that penalizes those that prove fewer

properties or require more resources. This cost function can

guide the configuration search of a wide range of existing

optimization algorithms.

We implement our technique in a framework called TAI-

LOR, which configures a given abstract interpreter for a given

usage scenario using a given optimization algorithm. As a

result, TAILOR enables the abstract interpreter to prove as

many properties as possible within the resource limit without
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requiring any domain expertise on behalf of the user.

Using TAILOR, we find that tailored configurations vastly

outperform the default options pre-selected by the analysis

designers. In fact, we show that this is possible even with very

simple optimization algorithms. Our experiments also demon-

strate that tailored configurations vary significantly depending

on the usage scenario—in other words, there cannot be a

single configuration that fits all scenarios. Finally, most of the

generated configurations remain tailored to several subsequent

code versions, suggesting that re-tuning is only necessary after

major code changes.

Contributions. We make the following contributions:

1) We present the first technique for automatically tailoring

abstract interpreters to custom usage scenarios.

2) We implement our technique in a framework called

TAILOR.

3) Using a state-of-the-art abstract interpreter with millions

of configurations, we show the effectiveness of TAILOR

on real-world benchmarks.

Outline. In the next section, we give a high-level overview

of our technique and framework. Sect. III provides background

on the generic architecture of abstract interpreters. Sect. IV

describes our technique in detail, and Sect. V presents our

experimental evaluation. We discuss related work in Sect. VI

and conclude in Sect. VII.

II. OVERVIEW

We now illustrate the workflow and tool architecture of

TAILOR and provide examples of its effectiveness.

Terminology. In the following, we refer to an abstract

domain with all its options (e.g., enabling backward analysis

or more precise treatment of arrays etc.) as an ingredient.

As discussed earlier, abstract interpreters typically provide a

large number of such ingredients. To make matters worse, it is

also possible to combine different ingredients into a sequence

(which we call a recipe) such that more properties are verified

than with individual ingredients. For example, a user could

configure the abstract interpreter to first use Intervals to verify

as many properties as possible and then use Polyhedra to

attempt verification of any remaining properties. Of course, the

number of possible configurations grows exponentially in the

length of the recipe (over 6M in our experiments for recipes

up to length 3).

Workflow. The high-level architecture of TAILOR is shown

in Fig. 1. It takes as input the code to be analyzed (i.e., any

program, file, function, or fragment), a user-provided resource

limit, and optionally an optimization algorithm. We focus

on time as the constrained resource in this paper, but our

technique could be easily extended to other resources, such

as memory.

The optimization engine relies on a recipe generator to

generate a fresh recipe. To assess its quality in terms of

precision and performance, the recipe evaluator computes a

cost for the recipe. The cost is computed by evaluating how

precise and efficient the abstract interpreter is for the given

recipe. This cost is used by the optimization engine to keep

code + resources +

optimization algorithm
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Figure 1: Overview of TAILOR.

track of the best recipe so far, i.e., the one that proves the

most properties in the least amount of time. TAILOR repeats

this process for a given number of iterations to sample multiple

recipes and returns the recipe with the lowest cost.

Zooming in on the evaluator, a recipe is processed by

invoking the abstract interpreter for each ingredient. After

each analysis (i.e., one ingredient), the evaluator collects the

new verification results, that is, the verified assertions. All

verification results that have been achieved so far are sub-

sequently shared with the analyzer when it is invoked for the

next ingredient. Verification results are shared by converting

all verified assertions into assumptions. After processing the

entire recipe, the evaluator computes a cost for the recipe,

which depends on the number of unverified assertions and the

total analysis time.

In general, there might be more than one recipe tailored

to a particular usage scenario. Naı̈vely, finding one requires

searching the space of all recipes. Sect. IV-C discusses several

optimization algorithms for performing this search, which

TAILOR already incorporates in the optimization engine.

Examples. As an example, let us consider the usage sce-

nario where a user runs the CRAB abstract interpreter [7] in

their editor for instant feedback during code development. This

means that the allowed time limit for the analysis is very

short, say, 1 sec. Now assume that the code under analysis

is a program file1 of the multimedia processing tool FFMPEG,

which is used to evaluate the effectiveness of TAILOR in

our experiments. In this file, CRAB checks 45 assertions for

common bugs, namely, division by zero, integer overflow,

buffer overflow, and use after free.

Analysis of this file with the default CRAB configuration

takes 0.35 sec to complete. In this time, CRAB proves 17

assertions and emits 28 warnings about the properties that

remain unverified. For this usage scenario, TAILOR is able

to tune the abstract-interpreter configuration such that the

analysis time is 0.57 sec and the number of verified properties

increases by 29% (i.e., 22 assertions are proved). Note that

the tailored configuration uses a completely different abstract

domain than the one used in the default configuration. As a

result, the verification results are significantly better, but the

analysis takes slightly longer to complete (although remaining

1https://github.com/FFmpeg/FFmpeg/blob/master/libavformat/idcin.c
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within the specified time limit). In contrast, enabling the most

precise analysis in CRAB verifies 26 assertions but takes

over 6 min to complete, which by far exceeds the time limit

imposed by the specified usage scenario.

While it takes TAILOR 4.5 sec to find the above confi-

guration, this is time well invested; the configuration can

be re-used for several subsequent code versions. In fact, in

our experiments, we show that generated configurations can

remain tailored for at least up to 50 subsequent commits to

a file under version control. Given that changes in the editor

are typically much more incremental, we expect that no re-

tuning would be necessary at all during an editor session. Re-

tuning may be beneficial after major changes to the code under

analysis and can happen offline, e.g., between editor sessions,

or in the worst case overnight.

As another example, consider the usage scenario where

CRAB is integrated in a CI pipeline. In this scenario, users

should be able to spare more time for analysis, say, 5 min.

Here, let us assume that the analyzed code is a program file2

of the CURL tool for transferring data by URL, which is also

used in our evaluation. The default CRAB configuration takes

0.23 sec to run and only verifies 2 out of 33 checked assertions.

TAILOR is able to find a configuration that takes 7.6 sec and

proves 8 assertions. In contrast, the most precise configuration

does not terminate even after 15 min.

Both usage scenarios demonstrate that, even when users

have more time to spare, the default configuration cannot take

advantage of it to improve the verification results. At the same

time, the most precise configuration is completely impractical

since it does not respect the resource constraints imposed by

these scenarios.

III. BACKGROUND: A GENERIC ABSTRACT INTERPRETER

Many successful abstract interpreters (e.g., Astrée [3], C

Global Surveyor [8], Clousot [9], CRAB [7], IKOS [10],

Sparrow [11], and Infer [1]) follow the generic architecture

in Fig. 2. In this section, we describe the main components of

such a generic abstract interpreter.

Memory domain. Analysis of low-level languages such

as C and LLVM-bitcode requires reasoning about pointers.

It is, therefore, common to design a memory domain [12]

that can simultaneously reason about pointer aliasing, memory

contents, and numerical relations between them.

Pointer domains resolve aliasing between pointers, and

array domains reason about memory contents. In particular,

array domains can reason about individual memory loca-

tions (cells), infer universal properties over multiple cells, or

both. Typically, reasoning about individual cells trades perfor-

mance for precision unless there are very few array elements

(e.g., [13], [12]). In contrast, reasoning about multiple memory

locations (summarized cells) trades precision for performance.

In our evaluation, we use Array smashing domains [3] that

abstract different array elements into a single summarized cell.

Logico-numerical domains infer relationships between pro-

gram and synthetic variables, introduced by the pointer and

2https://github.com/curl/curl/blob/master/lib/cookie.c

array domains, e.g., summarized cells. Next, we introduce

domains typically used for proving the absence of runtime

errors in low-level languages.

Boolean domains (e.g., flat Boolean, BDDApron [14]) rea-

son about Boolean variables and expressions. Non-relational

domains (e.g., Intervals [5], Congruence [15]) do not track

relations among different variables, in contrast to relational

domains (e.g., Equality [16], Zones [17], Octagons [18],

Polyhedra [6]). Due to their increased precision, relational

domains are typically less efficient than non-relational ones.

Symbolic domains (e.g., Congruence closure [19], Symbolic

constant [20], Term [21]) abstract complex expressions (e.g.,

non-linear) and external library calls by uninterpreted func-

tions. Non-convex domains express disjunctive invariants. For

instance, the DisInt domain [9] extends Intervals to a finite

disjunction; it retains the scalability of the Intervals domain by

keeping only non-overlapping intervals. On the other hand, the

Boxes domain [22] captures arbitrary Boolean combinations of

intervals, which can often be expensive.

Fixpoint computation. To ensure termination of the fix-

point computation, Cousot and Cousot introduce widening [4],

[23], which usually incurs a loss of precision. There are three

common strategies to reduce this precision loss, which how-

ever sacrifice efficiency. First, delayed widening [3] performs

a number of initial fixpoint-computation iterations in the hope

of reaching a fixpoint before resorting to widening. Second,

widening with thresholds [24], [25] limits the number of

program expressions (thresholds) that are used when widening.

The third strategy consists in applying narrowing [4], [23] a

certain number of times.

Forward and backward analysis. Classically, abstract

interpreters analyze code by propagating abstract states in

a forward manner. However, abstract interpreters can also

perform backward analysis to compute the execution states

that lead to an assertion violation. Cousot and Cousot [26],

[27] define a forward-backward refinement algorithm in which

a forward analysis is followed by a backward analysis until

no more refinement is possible. The backward analysis uses

invariants computed by the forward analysis, while the forward

analysis does not explore states that cannot reach an assertion

violation based on the backward analysis. This refinement is

more precise than forward analysis alone, but it may also

become very expensive.

Intra- and inter-procedural analysis. An intra-procedural

analysis analyzes a function ignoring the information (i.e., call

stack) that flows into that function, while an inter-procedural

analysis considers all the flows among functions. The former

is much more efficient and easy to parallelize, but the latter is

usually more precise.

IV. OUR TECHNIQUE

In this section, we describe the main components of TAILOR

in detail; Sects. IV-A, IV-B, IV-C explain the optimization

engine, recipe evaluator, and recipe generator from Fig. 1.
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Figure 2: Generic architecture of an abstract interpreter.

A. Recipe Optimization

Alg. 1 implements the optimization engine. In addition to

the code P and the resource limit rmax it also takes as input

the maximum length of the generated recipes lmax (i.e., the

maximum number of ingredients), a function to generate new

recipes GENERATEREC (i.e., the recipe generator from Fig. 1),

and four other parameters, which we explain later.

A tailored recipe is found in two phases. The first phase

aims to find the best abstract domain for each ingredient,

while the second tunes the remaining analysis settings for

each ingredient (e.g., whether backward analysis should be

enabled). Parameters idom and iset control the number of

iterations of each phase. Note that we start with a search for

the best domains since they have the largest impact on the

precision and performance of the analysis.

During the first phase, the algorithm initializes the best

recipe recbest with an initial recipe recinit (line 3). The

cost of this recipe is evaluated with function EVAL, which

implements the recipe-evaluator component from Fig. 1. The

subsequent nested loop (line 5) samples a number of recipes,

starting with the shortest recipes (l := 1) and ending with the

longest recipes (l := lmax). The inner loop generates idom
ingredients for each ingredient in the recipe (i.e., idom · l
total iterations) by invoking function GENERATEREC, and in

case a recipe with lower cost is found, it updates the best

recipe (lines 9–10). Several optimization algorithms, such as

hill climbing and simulated annealing, search for an optimal

result by mutating some of the intermediate results. Variable

reccurr stores intermediate recipes to be mutated, and function

ACCEPT decides when to update it (lines 11–12).

As explained earlier, the purpose of the first phase is to

identify the best sequence of abstract domains. The second

phase (lines 13–18) focuses on tuning the other settings of

the best recipe so far. This is done by randomly mutating the

best recipe via MUTATESETTINGS (line 15), and updating the

best recipe if better settings are found (lines 17–18). After

exploring iset random settings, the best recipe is returned to

the user (line 19).

Algorithm 1: Optimization engine.

1 Function OPTIMIZE(P , rmax, lmax, idom, iset, recinit,
GENERATEREC, ACCEPT) is

2 // Phase 1 (optimize domains)
3 recbest := reccurr := recinit
4 costbest := costcurr := EVAL(P , rmax, recbest)
5 for l := 1 to lmax do
6 for i := 1 to idom · l do
7 recnext := GENERATEREC(reccurr, l)
8 costnext := EVAL(P , rmax, recnext)
9 if costnext < costbest then

10 recbest, costbest := recnext, costnext

11 if ACCEPT(costcurr, costnext) then
12 reccurr, costcurr := recnext, costnext

13 // Phase 2 (optimize settings)
14 for i := 1 to iset do
15 recmut := MUTATESETTINGS(recbest)
16 costmut := EVAL(P , rmax, recmut)
17 if costmut < costbest then
18 recbest, costbest := recmut, costmut

19 return recbest

B. Recipe Evaluation

The recipe evaluator from Fig. 1 uses a cost function to

determine the quality of a fresh recipe with respect to the

precision and performance of the abstract interpreter. This

design is motivated by the fact that analysis imprecision and

inefficiency are among the top pain points for users [28].

Therefore, the cost function depends on the number of

generated warnings w (that is, the number of unverified

assertions), the total number of assertions in the code wtotal ,

the resource consumption r of the analyzer, and the resource

limit rmax imposed on the analyzer:

cost(w,wtotal , r, rmax) =











w +
r

rmax

wtotal

, if r ≤ rmax

∞, otherwise

Note that w and r are measured by invoking the abstract

interpreter with the recipe under evaluation. The cost function

evaluates to a lower cost for recipes that improve the precision

of the abstract interpreter (due to the term w/wtotal ). In case

of ties, the term r/rmax causes the function to evaluate to a

lower cost for recipes that result in a more efficient analysis.

In other words, for two recipes resulting in equal precision,

the one with the smaller resource consumption is assigned a

lower cost. When a recipe causes the analyzer to exceed the

resource limit, it is assigned infinite cost.

C. Recipe Generation

In the literature, there is a broad range of optimization

algorithms for different application domains. To demonstrate

the generality and effectiveness of TAILOR, we instantiate

it with four adaptations of three well-known optimization

algorithms, namely random sampling [29], hill climbing (with
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regular restarts) [30], and simulated annealing [31], [32]. Here,

we describe these algorithms in detail, and in Sect. V, we

evaluate their effectiveness.

Before diving into the details, let us discuss the suitability

of different kinds of optimization algorithms for our domain.

There are algorithms that leverage mathematical properties of

the function to be optimized, e.g., by computing derivatives

as in Newton’s iterative method. Our cost function, however,

is evaluated by running an abstract interpreter, and thus, it

is not differentiable or continuous. This constraint makes such

analytical algorithms unsuitable. Moreover, evaluating our cost

function is expensive, especially for precise abstract domains

such as Polyhedra. This makes algorithms that require a large

number of samples, such as genetic algorithms, less practical.

Now recall that Alg. 1 is parametric in how new recipes

are generated (GENERATEREC) and accepted for further mu-

tations (ACCEPT). Instantiations of these functions essentially

constitute our search strategy for a tailored recipe. In the

following, we discuss four such instantiations. Note that, in

theory, the order of recipe ingredients matters. This is because

any properties verified by one ingredient are converted into

assumptions for the next, and different assumptions may lead

to different verification results. Therefore, all our instantiations

are able to explore different ingredient orderings.

Random sampling. Random sampling (RS) just generates

random recipes of a certain length. Function ACCEPT always

returns false as each recipe is generated from scratch, and not

as a result of any mutations.

Domain-aware random sampling. RS might generate

recipes containing two or more abstract domains of compara-

ble precision. For instance, the Octagons domain is typically

strictly more precise than Intervals. As a result, a recipe

consisting of these domains is essentially equivalent to a recipe

containing only Octagons.

Now, assume that we have a partially ordered set (poset) of

domains that defines their ordering in terms of precision. An

example of such a poset for a particular abstract interpreter is

shown in Fig. 3. An optimization algorithm can then leverage

this information to reduce the search space of possible recipes.

Given such a poset, we therefore define domain-aware random

sampling (DARS), which randomly samples recipes that do

not contain abstract domains of comparable precision. Again,

ACCEPT always returns false .

Simulated annealing. Simulated annealing (SA) searches

for the best recipe by mutating the current recipe reccurr in

Alg. 1. The resulting recipe (recnext), if accepted on line 12,

becomes the new recipe to be mutated. Alg. 2 shows an

instantiation of GENERATEREC, which mutates a given recipe

such that the poset precision constraints are satisfied (i.e., there

are no domains of comparable precision). A recipe is mutated

either by adding new ingredients with 20% probability or by

modifying existing ones with 80% probability (line 2). The

probability of adding ingredients is lower to keep recipes short.

When adding a new ingredient (lines 4–5), Alg. 2 calls

RANDPOSETLEASTINC, which considers all domains that are

incomparable with the domains in the recipe. Given this set,

Algorithm 2: A recipe-generator instantiation.

1 Function GENERATEREC(rec, lmax) is
2 act := RANDACT({ADD: 0.2, MOD: 0.8}))
3 if act = ADD ∧ LEN(rec) < lmax then
4 ingr

new
:= RANDPOSETLEASTINC(rec)

5 recmut := ADDINGR(rec, ingr
new

)
6 else
7 ingr := RANDINGR(rec)
8 actm := RANDACT({GT: 0.5, LT: 0.3, INC: 0.2})
9 if actm = GT then

10 ingr
new

:= POSETGT(ingr)
11 else if actm = LT then
12 ingr

new
:= POSETLT(ingr)

13 else
14 recrem := REMOVEINGR(rec, ingr)
15 ingr

new
:= RANDPOSETLEASTINC(recrem)

16 recmut := REPLACEINGR(rec, ingr, ingr
new

)

17 if ¬POSETCOMPAT(recmut) then
18 recmut := GENERATEREC(rec, lmax)

19 return recmut

it randomly selects from the domains with the least precision

to avoid adding overly expensive domains. When modifying a

random ingredient in the recipe (lines 7–16), the algorithm can

replace its domain with one of three possibilities: a domain that

is immediately more precise (i.e., not transitively) in the poset

(via POSETGT), a domain that is immediately less precise (via

POSETLT), or an incomparable domain with the least precision

(via RANDPOSETLEASTINC). In case the resulting recipe does

not satisfy the poset precision constraints, our algorithm retries

to mutate the original recipe (lines 17–18).

For simulated annealing, function ACCEPT returns true if

the new cost (for the mutated recipe) is less than the current

cost. It also accepts recipes whose cost is higher with a certain

probability, which is inversely proportional to the cost increase

as well as the number of recipes explored so far. In other

words, recipes with a small cost increase are likely to be

accepted, especially toward the beginning of the exploration.

Hill climbing. Our instantiation of hill climbing (HC) per-

forms regular restarts. In particular, it starts with a randomly

generated recipe that satisfies the poset precision constraints,

generates 10 new valid recipes, and restarts with a random

recipe. ACCEPT returns true only if the new cost is lower

than the best cost, which is equivalent to the current cost.

V. EXPERIMENTAL EVALUATION

To evaluate our technique, we aim to answer the following

research questions:

RQ1: Is our technique effective in finding tailored recipes for

different usage scenarios?

RQ2: Are the tailored recipes optimal?

RQ3: How diverse are the tailored recipes?

RQ4: How resilient are the tailored recipes to code changes?

A. Implementation

We implemented TAILOR by extending CRAB [7], a para-

metric framework for modular construction of abstract inter-
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Setting Possible Values

NUM_DELAY_WIDEN {1, 2, 4, 8, 16}
NUM_NARROW_ITERATIONS {1, 2, 3, 4}
NUM_WIDEN_THRESHOLDS {0, 10, 20, 30, 40}
BACKWARD ANALYSIS {OFF,ON}
ARRAY SMASHING {OFF ,ON}
ABSTRACT DOMAINS all domains in Fig. 3

Table 1: CRAB settings and their possible values as used

in our experiments. Default settings are shown in bold.

preters3. We extended CRAB with the ability to pass verifi-

cation results between recipe ingredients as well as with the

four optimization algorithms discussed in Sect. IV-C.

Tab. 1 shows all settings and values used in our evaluation.

The first three settings refer to the strategies discussed in

Sect. III for mitigating the precision loss incurred by widening.

For the initial recipe, TAILOR uses Intervals and the CRAB

default values for all other settings (in bold in the table). To

make the search more efficient, we selected a subset of all

possible setting values for our experiments. However, to ensure

a representative subset, we consulted with the CRAB designer.

CRAB uses a DSA-based [33] pointer analysis and can,

optionally, reason about array contents using array smashing.

It offers a wide range of logico-numerical domains, shown

in Fig. 3. The bool domain is the flat Boolean domain,

ric is a reduced product of Intervals and Congruence, and

term(int) and term(disInt) are instantiations of the

Term domain with intervals and disInt, respectively.

Even though CRAB provides a bottom-up inter-procedural

analysis, our evaluation uses the default intra-procedural anal-

ysis; in fact, most static analyses deployed in real usage

scenarios are intra-procedural due to time constraints [28].

B. Benchmark Selection

For our evaluation, we systematically selected popular and

(at some point) active C projects on GitHub. In particular,

we chose the six most starred C repositories with over 300

commits that we could successfully build with the Clang-5.0

compiler. We give a short description of each project in Tab. 2.

For analyzing these projects using abstract interpretation,

we needed to introduce properties to be verified. For our

purposes, we instrumented these projects with four types of

boxes

term(disInt)

disInt

polyhedra

octagons

zones term(int) ric

intervals bool

Figure 3: Comparing logico-numerical domains in CRAB.

A domain d1 is less precise than d2 if there is a path

from d1 to d2 going upward, otherwise d1 and d2 are

incomparable.

3CRAB is available at https://github.com/seahorn/crab.

Project Description

CURL Tool for transferring data by URL
DARKNET Convolutional neural-network framework
FFMPEG Multimedia processing tool
GIT Distributed version-control tool
PHP-SRC PHP interpreter
REDIS Persistent in-memory database

Table 2: Overview of projects.

assertions that check for common bugs; namely, division by

zero, integer overflow, buffer overflow, and use after free.

Introducing assertions to check for runtime errors such as these

is common practice in program analysis and verification.

As projects consist of different numbers of files, to avoid

skewing the results in favor of a particular project, we ran-

domly and uniformly sampled 20 LLVM-bitcode files from

each project, for a total of 120. To ensure that each file was

neither too trivial nor too difficult for the abstract interpreter,

we used the number of assertions as a complexity indicator

and only sampled files with at least 20 assertions and at most

100. Additionally, to guarantee all four assertion types (listed

above) were included and avoid skewing the results in favor

of a particular assertion type, we required that the sum of

assertions for each type was at least 70 across all files—this

exact number was largely determined by the benchmarks.

Overall, our benchmark suite of 120 files totals 1346 func-

tions, 5557 assertions (on average 4 assertions per function),

and 667927 LLVM instructions (see Tab. 3).

C. Results

We now present our experimental results for each research

question. We performed all experiments on a 32-core Intel

® Xeon ® E5-2667 v2 CPU @ 3.30GHz machine with 264GB

of memory, running Ubuntu 16.04.1 LTS.

RQ1: Is our technique effective in finding tailored

recipes for different usage scenarios? We instantiated

TAILOR with the four optimization algorithms described in

Sect. IV-C: RS, DARS, SA, and HC. We constrained the

analysis time to simulate two usage scenarios: 1 sec for instant

feedback in the editor, and 5 min for feedback in a CI pipeline.

We compare TAILOR with the default recipe (DEF), i.e., the

default settings in CRAB as defined by its designer after careful

tuning on a large set of benchmarks over the years. DEF uses a

combination of two domains, namely, the reduced product of

Boolean and Zones. The other default settings are in Tab. 1.

Project Functions Assertions LLVM Instructions

CURL 306 787 50 541

DARKNET 130 958 55 847

FFMPEG 103 888 27 653

GIT 218 768 102 304

PHP-SRC 268 1031 305 943

REDIS 321 1125 125 639

Total 1346 5557 667 927

Table 3: Benchmark characteristics (20 files per project).

The last three columns show the number of functions,

assertions, and LLVM instructions in the analyzed files.

6

https://github.com/seahorn/crab


DARS RS HC SA DEF

0

700

1,400

629 606 567 547

346

953 944 914 912

457

N
u

m
b

er
o

f
v
er

ifi
ed

a
ss

er
ti

o
n

s
1sec 5min

Figure 4: Comparison of the number of assertions verified

with the best recipe generated by each optimization algo-

rithm and with the default recipe, for varying timeouts.

For this experiment, we ran TAILOR with each optimization

algorithm on the 120 benchmark files, enabling optimization

at the granularity of files. Each algorithm was seeded with the

same random seed. In Alg. 1, we restrict recipes to contain at

most 3 domains (lmax = 3) and set the number of iterations

for each phase to be 5 and 10 (idom = 5 and iset = 10).

The results are presented in Fig. 4, which shows the number

of assertions that are verified with the best recipe found by

each algorithm as well as by the default recipe. All algorithms

outperform the default recipe for both usage scenarios, veri-

fying almost twice as many assertions on average.

Fig. 5 gives a more detailed comparison with the default

recipe for the time limit of 5 min. In particular, each horizontal

bar shows the total number of assertions verified by each algo-

rithm. The orange portion represents the assertions verified by

both the default recipe and the optimization algorithm, while

the green and red portions represent the assertions only verified

by the algorithm and default recipe, respectively. These results

show that, in addition to verifying hundreds of new assertions,

TAILOR is able to verify the vast majority of assertions proved

by the default recipe, regardless of optimization algorithm.

In Fig. 6, we show the total time that each algorithm takes

for all iterations. DARS takes longer than all others. This is

due to generating more precise recipes thanks to its domain

knowledge. Such recipes typically take longer to run but verify

more assertions (as in Fig. 4). On average, for all algorithms,

TAILOR requires only 30 sec to complete all iterations for the

1-sec timeout and 16 min for the 5-min timeout. As discussed

in Sect. II, this tuning time can be spent offline.
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Figure 5: Comparison of the number of assertions verified

by a tailored vs. the default recipe.
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Figure 6: Comparison of the total time (in sec) that each

algorithm requires for all iterations, for varying timeouts.

Fig. 7 compares the total number of assertions verified by

each algorithm when TAILOR runs for 40 (idom = 5 and

iset = 10) and 80 (idom = 10 and iset = 20) iterations. The

results show that only a relatively small number of additional

assertions are verified with 80 iterations. In fact, we expect the

algorithms to eventually converge on the number of verified

assertions, given the time limit and precision of the available

domains. Fig. 8 shows the number of iterations required for

each algorithm to find the best recipe, which indicates that few

assertions require more specialized recipes to be proved and

thus more iterations.

As DARS performs best in this comparison, for the

remaining experiments, we only enable this algorithm with

the 5-min timeout for simplicity.

RQ1 takeaway: TAILOR verifies nearly twice the

assertions of the default recipe, regardless of opti-

mization algorithm, timeout, or number of iterations.

In fact, even very simple algorithms (such as RS)

significantly outperform the default recipe.

RQ2: Are the tailored recipes optimal? To check the opti-

mality of the tailored recipes, we compared them with the most

precise (and least efficient) CRAB configuration. It uses the

most precise domains from Fig. 3 (i.e., bool, polyhedra,

term(int), ric, boxes, and term(disInt)) in a

recipe of 6 ingredients and assigns the most precise values

to all other settings from Tab. 1. We gave a 30-min timeout

to this recipe.

For 21 out of 120 files, the most precise recipe ran out of
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Figure 7: Comparison of the number of assertions verified

with the best recipe generated by the different optimization

algorithms, for different numbers of iterations.
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Figure 8: Comparison of the average number of iterations

that each algorithm needs to find the best recipe, for

varying numbers of iterations.

memory (264GB). For 86 files, it terminated within 5 min, and

for 13, it took longer (within 30 min)—in many cases, this was

even longer than TAILOR’s tuning time in Fig. 6. We compared

the number of assertions verified by our tailored recipes (which

do not exceed 5 min) and by the most precise recipe. For the

86 files that terminated within 5 min, our recipes prove 618

assertions, whereas the most precise recipe proves 534. For

the other 13 files, our recipes prove 119 assertions, whereas

the most precise recipe proves 98.

Consequently, our (in theory) less precise and more efficient

recipes prove more assertions in files where the most precise

recipe terminates. Possible explanations for this non-intuitive

result are: (1) Polyhedra coefficients may overflow, in which

case the constraints are typically ignored by abstract inter-

preters, and (2) more precise domains with different widening

operations may result in less precise results [34], [35].

We also evaluated the optimality of tailored recipes by

mutating individual parts of the recipe and comparing to the

original. In particular, for each setting in Tab. 1, we tried

all possible values and replaced each domain with all other

comparable domains in the poset of Fig. 3. For example, for a

recipe including zones, we tried octagons, polyhedra,

and intervals. In addition, we tried all possible orderings

of the recipe ingredients, which in theory could produce dif-

ferent results. We observed whether these changes resulted in

a difference in the precision and performance of the analyzer.

Fig. 9 shows the results of this experiment, broken down
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Figure 9: Effect of different settings on the precision

and performance of the abstract interpreter. (DW: NUM_-

DELAY_WIDEN, NI: NUM_NARROW_ITERATIONS, WT:

NUM_WIDEN_THRESHOLDS, AS: array smashing, B: back-

ward analysis, D: abstract domain, O: ingredient ordering).
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Figure 10: Occurrence of domains (in %) in the best

recipes found by TAILOR for all assertion types.

by setting. Equal (in orange) indicates that the mutated recipe

proves the same number of assertions within ±5 seconds of

the original. Positive (in green) indicates that it either proves

more assertions or the same number of assertions at least 5
seconds faster. Negative (in red) indicates that the mutated

recipe either proves fewer assertions or the same number of

assertions at least 5 seconds slower.

The results show that, for our benchmarks, mutating the

recipe found by TAILOR rarely led to an improvement. In

particular, at least 93% of all mutated recipes were either

equal to or worse than the original recipe. In the majority of

these cases, mutated recipes are equally good. This indicates

that there are many optimal or close-to-optimal solutions and

that TAILOR is able to find one of them.

RQ2 takeaway: As compared to the most precise

recipe, TAILOR verified more assertions across bench-

marks where the most precise recipe terminated. Fur-

thermore, mutating recipes found by TAILOR resulted

in improvement only for less than 7% of recipes.

RQ3: How diverse are the tailored recipes? To motivate

the need for optimization, we must show that tailored recipes

are sufficiently diverse such that they could not be replaced

by a well-crafted default recipe. To better understand the

characteristics of tailored recipes, we manually inspected all

recipes generated by TAILOR.

TAILOR generated recipes of length greater than 1 for 61

files. Out of these, 37 are of length 2 and 24 of length 3. For

77% of generated recipes, NUM_DELAY_WIDEN is not set to

the default value of 1. Additionally, 55% of the ingredients

enable array smashing, and 32% enable backward analysis.

Fig. 10 shows how often (in percentage) each abstract

domain occurs in a best recipe found by TAILOR. We observe

that all domains occur almost equally often, with 6 of the

10 domains occurring in between 9% and 13% of recipes.

The most common domain was bool at 18%, and the least

common was intervals at 4%. We observed a similar dis-

tribution of domains even when instrumenting the benchmarks

with only one assertion type, e.g., those that check for integer

overflow (see Fig. 11).

We also inspected which domain combinations are

frequently used in the tailored recipes. One common pattern
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Figure 11: Occurrence of domains (in %) in the best

recipes found by TAILOR for integer-overflow assertions.

is combinations between bool and numerical domains

(18 occurrences). Similarly, we observed 2 occurrences of

term(disInt) together with zones. Interestingly, the

less powerful variants of combining disInt with zones (3

occurrences) and term(int) with zones (6 occurrences)

seem to be sufficient in many cases. Finally, we observed

8 occurrences of polyhedra or octagons with boxes,

which are the most precise convex and non-convex domains.

Our approach is, thus, not only useful for users, but also for

designers of abstract interpreters by potentially inspiring new

domain combinations.

RQ3 takeaway: The diversity of tailored recipes

prevents replacing them with a single default recipe.

Over half of the tailored recipes contain more than one

ingredient, and ingredients use a variety of domains

and their settings.

RQ4: How resilient are the tailored recipes to code

changes? We expect tailored recipes to be resilient to code

changes, i.e., to retain their optimality across several changes

without requiring re-tuning. We now evaluate if a recipe

tailored for one code version is also tailored for another, even

when the two versions are 50 commits apart.

For this experiment, we took a random sample of 60 files

from our benchmarks and retrieved the 50 most recent commits

per file. We only sampled 60 out of 120 files as building these

files for each commit is quite time consuming—it can take up

to a couple of days. We instrumented each file version with the

four assertion types described in Sect. V-B. It should be noted

that, for some files, we retrieved fewer than 50 versions either

because there were fewer than 50 total commits or our build

procedure for the project failed on older commits. This is also

why we did not run this experiment for over 50 commits.

We analyzed each file version with the best recipe, Ro,

found by TAILOR for the oldest file version. We compared

this recipe with new best recipes, Rn, that were generated by

TAILOR when run on each subsequent file version. For this

experiment, we used a 5-min timeout and 40 iterations.

Note that, when running TAILOR with the same optimiza-

tion algorithm and random seed, it explores the same recipes.

It is, therefore, very likely that recipe Ro for the oldest commit

is also the best for other file versions since we only explore 40
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Figure 12: Difference in the safe assertions across commits.

different recipes. To avoid any such bias, we performed this

experiment by seeding TAILOR with a different random seed

for each commit. The results are shown in Figs. 12 and 13.

In Fig. 12, we give a bar chart comparing the number of files

per commit that have a positive, equal, and negative difference

in the number of verified assertions, where commit 0 is the

oldest commit and 49 the newest. An equal difference (in

orange) means that recipe Ro for the oldest commit proves

the same number of assertions in the current file version, fn,

as recipe Rn found by running TAILOR on fn. To be more

precise, we consider the two recipes to be equal if they differ

by at most 1 verified assertion or 1% of verified assertions

since such a small change in the number of safe assertions

seems acceptable in practice (especially given that the total

number of assertions may change across commits). A positive

difference (in green) means that Ro achieves better verification

results than Rn, that is, Ro proves more assertions safe (over 1

assertion or 1% of the assertions that Rn proves). Analogously,

a negative difference (in red) means that Ro proves fewer

assertions. We do not consider time here because none of the

recipes timed out when applied on any file version.

Note that the number of files decreases for newer commits.

This is because not all files go forward by 50 commits, and

even if they do, not all file versions build. However, in a few

instances, the number of files increases going forward in time.

This happens for files that change names, and later, change

back, which we do not catch.

For the vast majority of files, using recipe Ro (found for

the oldest commit) is as effective as using Rn (found for the

current commit). The difference in safe assertions is negative

for less than a quarter of the files tested, with the average

negative difference among these files being around 22% (i.e.,

Ro proved 22% fewer assertions than Rn in these files). On

the remaining three quarters of the files tested however, Ro

proves at least as many assertions as Rn, and thus, Ro tends

to be tailored across code versions.

Fig. 13 shows the average difference in the number of

verified assertions per change in lines of code from the

oldest commit. Note that a positive (resp. negative) difference

represents that Ro (resp. Rn) proves more assertions. The

plot clearly shows that for most files, regardless of lines

changed, Ro and Rn are equally effective. Regarding the

outliers shown in the figure, we noticed that all commits

with a difference of 50 safe assertions or more modify one
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Figure 13: Average difference in the number of safe

assertions per change in lines of code from oldest commit.

particular file from the GIT project. In this case, Ro is not as

effective because the widening and narrowing settings have

very low values.

RQ4 takeaway: For over 75% of files, TAILOR’s

recipe for a previous commit (from up to 50 commits

previous) remains tailored for future versions of the

file, indicating the resilience of tailored recipes across

code changes.

D. Threats to Validity

We have identified the following threats to the validity of

our experiments.

Benchmark selection. Our results may not generalize to

other benchmarks. However, we selected popular GitHub

projects from different application domains (see Tab. 2).

Hence, we believe that our benchmark selection mitigates this

threat and increases generalizability of our findings.

Abstract interpreter and recipe settings. For our experi-

ments, we only used a single abstract interpreter, CRAB, which

however is a mature tool and actively supported. The selection

of recipe settings was, of course, influenced by the available

settings in CRAB. Nevertheless, CRAB implements the generic

architecture of Fig. 2, used by most abstract interpreters, such

as those mentioned at the beginning of Sect. III. We, therefore,

expect our approach to generalize to such analyzers.

Optimization algorithms. We considered four optimization

algorithms, but in Sect. IV-C, we explain why these are

suitable for our application domain. Moreover, TAILOR is

configurable with respect to the optimization algorithm.

Assertion types. Our results are based on four types of

assertions. However, these cover a broad spectrum of runtime

errors that are commonly checked by static analyzers.

VI. RELATED WORK

The impact of different abstract-interpretation configura-

tions has been previously evaluated [47] for Java programs

and partially inspired this work. To the best of our knowledge,

we are the first to propose tailoring static analyzers to custom

usage scenarios using optimization. However, optimization is

a widely used technique in many engineering disciplines. In

the following, we focus on its use in program analysis.

Optimization has been successfully applied to a number of

program-analysis problems, such as automated testing [43],

[44], invariant inference [45], and compiler optimizations [?].

Many machine-learning techniques also rely on optimiza-

tion, for instance of loss functions in neural networks. Re-

cently, researchers have started to explore the direction of

enriching program analyses with machine-learning techniques,

for example, to automatically learn analysis heuristics [49],

[50], [51], [52]. A particularly relevant body of work is on

adaptive program analysis [54], [55], [56], where existing

code is analyzed to learn heuristics that trade soundness for

precision or that coarsen the analysis abstractions to improve

memory consumption.

More specifically, adaptive program analysis poses different

static-analysis problems as machine-learning problems and

relies on Bayesian optimization to solve them, e.g., the prob-

lem of selectively applying unsoundness to different program

components (e.g., different loops in the program) [56]. The

main insight is that program components (e.g., loops) that

produce false positives are alike, predictable, and share com-

mon properties. After learning to identify such components for

existing code, this technique suggests components in unseen

code that should be analyzed unsoundly.

In contrast, TAILOR currently does not adjust soundness

of the analysis. However, this would also be possible if

the analyzer provided the corresponding configurations. More

importantly, adaptive analysis focuses on learning analysis

heuristics based on existing code in order to generalize to

arbitrary, unseen code. TAILOR, on the other hand, aims to

tune the analyzer configuration to a custom usage scenario,

including a particular program under analysis. In addition,

the custom usage scenario imposes user-specific resource

constraints, for instance by limiting the time according to a

phase of the software-engineering life cycle. As we show in

our experiments, the tuned configuration remains tailored to

several versions of the analyzed program. In fact, it outper-

forms configurations that are meant to generalize to arbitrary

programs, such as the default recipe.

VII. CONCLUSION

In this paper, we have proposed a technique and framework

that tailors a generic abstract interpreter to custom usage sce-

narios. We instantiated our framework with a mature abstract

interpreter to perform an extensive evaluation on real-world

benchmarks. Our experiments show that the configurations

generated by TAILOR are vastly better than the default options,

vary significantly depending on the code under analysis, and

most remain tailored to several subsequent code versions. In

the future, we plan to explore the challenges that an inter-

procedural analysis would pose, for instance, by using a

different recipe for computing a summary of each function

or each calling context.
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and X. Rival, “Combination of abstractions in the Astrée static analyzer,”
in ASIAN, ser. LNCS, vol. 4435. Springer, 2006, pp. 272–300.

[47] S. Wei, P. Mardziel, A. Ruef, J. S. Foster, and M. Hicks, “Evaluating
design tradeoffs in numeric static analysis for Java,” in ESOP, ser.
LNCS, vol. 10801. Springer, 2018, pp. 653–682.

[48] P. Cousot, R. Giacobazzi, and F. Ranzato, “A2i: Abstract2 interpreta-
tion,” PACMPL, vol. 3, pp. 42:1–42:31, 2019.

[49] K. Heo, H. Oh, and H. Yang, “Learning a variable-clustering strategy
for octagon from labeled data generated by a static analysis,” in SAS,
ser. LNCS, vol. 9837. Springer, 2016, pp. 237–256.

[50] S. Jeong, M. Jeon, S. D. Cha, and H. Oh, “Data-driven context-sensitivity
for points-to analysis,” PACMPL, vol. 1, pp. 100:1–100:28, 2017.

[51] V. Raychev, M. T. Vechev, and A. Krause, “Predicting program proper-
ties from ‘big code’,” CACM, vol. 62, pp. 99–107, 2019.
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